博客
关于我
递推算法——例题详解
阅读量:788 次
发布时间:2019-03-24

本文共 1445 字,大约阅读时间需要 4 分钟。

递推算法的本质

递推算法的本质是通过将复杂问题分解为多个较小的问题并建立彼此之间的数字关系,将问题一步步简化求解。在递推过程中,我们通过已知部分问题的结果,逐步推导出未知部分的问题解,类似于从下而上解决问题的方式,使得问题变得更加清晰和可控。

例一:数塔问题(倒推法)

数塔问题是递推算法的经典例子。问题描述为:在一个由数字构成的数塔中,从顶部到底部找出一条路径,使得路径上的数字之和最大。解决这个问题的常用方法是倒推法,即从上层向下层推导。

分析:将问题从上而下分解显然并不直观,因此我们选择从下而上进行分析。通过观察我们可以发现,每一层的数字之和等于下一层中与其相邻的两个数字中较大的那个加上当前层的数字。

最终,从最底层到最顶层,我们逐步计算每层的值,从而得到最大和路径。

代码实现:

#include 
#include
#include
#include
using namespace std;int main() { int n, i, j; char a[101][101]; cin >> n; for (i = 1; i <= n; ++i) { for (j = 1; j <= i; ++j) { cin >> a[i][j]; } } for (i = n - 1; i >= 1; --i) { for (j = 1; j <= i; ++j) { if (a[i + 1][j] >= a[i + 1][j + 1]) { a[i][j] += a[i + 1][j]; } else { a[i][j] += a[i + 1][j + 1]; } } } cout << a[1][1] << endl; return 0;}

例二:斐波那契数列的非递归实现

斐波那契数列是一个经典的递推序列,其定义为:f(0)=1,f(1)=1,f(n)=f(n-1)+f(n-2)。通过递推式,我们可以逐步计算出后续的数列项。

分析:观察数列的结构,我们可以发现每一项都等于前两项之和。通过非递归的方式,我们可以通过循环实现,将前一项和前前一项的值相加,逐步生成数列。

代码实现:

#include 
#include
#include
#include
using namespace std;int main() { int f0 = 1, f1 = 1, f2 = 2; int n; cin >> n; for (int i = 3; i <= n; ++i) { f2 = f0 + f1; f0 = f1; f1 = f2; } cout << f2; return 0;}

其他相关类型的问题

类似的递推类型问题还包括经典的蓝桥杯题目“奶牛问题”等,其中涉及递归和非递归的不同实现方法。

转载地址:http://phrkk.baihongyu.com/

你可能感兴趣的文章
nginx反向代理
查看>>
Nginx反向代理
查看>>
nginx反向代理、文件批量改名及统计ip访问量等精髓总结
查看>>
Nginx反向代理与正向代理配置
查看>>
Nginx反向代理及负载均衡实现过程部署
查看>>
Nginx反向代理是什么意思?如何配置Nginx反向代理?
查看>>
nginx反向代理解决跨域问题,使本地调试更方便
查看>>
Nginx反向代理配置
查看>>
Nginx启动SSL功能,并进行功能优化,你看这个就足够了
查看>>
nginx启动脚本
查看>>
Nginx在Windows上和Linux上(Docker启动)分别配置基本身份认证示例
查看>>
Nginx在Windows下载安装启动与配置前后端请求代理
查看>>
Nginx多域名,多证书,多服务配置,实用版
查看>>
nginx如何实现图片防盗链
查看>>
Nginx学习总结(12)——Nginx各项配置总结
查看>>
Nginx学习总结(13)——Nginx 重要知识点回顾
查看>>
Nginx学习总结(14)——Nginx配置参数详细说明与整理
查看>>
nginx学习笔记002---Nginx代理配置_案例1_实现了对前端代码的方向代理_并且配置了后端api接口的访问地址
查看>>
Nginx安装与常见命令
查看>>
Nginx安装及配置详解
查看>>